how-to-select-rows-from-a-dataframe-based-on-column-values-in-python?

You are able to extract rows from a DataFrame based on column values by utilizing Boolean indexing or the .loc[ ] method. These techniques will enhance the accessibility of the data within the library.

The Python pandas library features a variety of methods that assist in extracting rows from the DataFrame under various conditions. Such operations on the data facilitate its analysis and visualization in accordance with the particular dataset at hand. Pandas offers strategies for modifying the DataFrame according to user requirements.

Table of Contents:

Extracting Rows from a DataFrame based on Column Values in Python

Below are several methods to filter rows from a DataFrame based on column values:

  • Method 1: Utilizing Boolean Indexing
    • To extract rows based on a single column
    • To extract rows based on multiple conditions
    • To extract rows based on a set of values
    • To extract rows based on string matching
  • Method 2: Utilizing the .loc [ ] Method
    • Extracting rows based on multiple conditions
    • Extract rows based on a condition while retrieving specific columns
    • Using .loc[] for selecting rows and columns
    • Using .loc[] with index labels
  • Method 3: Applying the .query() Method
  • Method 4: Extracting rows using apply() and lambda
  • Method 5: Dealing with None and NaN data
    • Filtering rows where a column value is not NaN
    • Filtering rows where a column value is not None

Method 1: Utilizing Boolean Indexing for Row Extraction in Python

This method is among the most prevalent for extracting rows from a DataFrame according to column values. It functions by merging multiple conditions, resulting in flexible data handling and simplifying the user’s filtering process.

1. Extracting rows based on a single column in Python

For instance, you could create a dataset and then filter the data as demonstrated below:

Example:

Python

Code Copied!

var isMobile = window.innerWidth 35]nprint(filtered_df)n”);

editor81974.setValue(decodedContent); // Set the default text editor81974.clearSelection();

editor81974.setOptions({ maxLines: Infinity });

function decodeHTML81974(input) { var doc = new DOMParser().parseFromString(input, “text/html”); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard81974() { const code = editor81974.getValue(); // Get code from the editor navigator.clipboard.writeText(code).then(() => { // alert(“Code copied to clipboard!”);

jQuery(“.maineditor81974 .copymessage”).show(); setTimeout(function() { jQuery(“.maineditor81974 .copymessage”).hide(); }, 2000); }).catch(err => { console.error(“Error copying code: “, err); }); }

function runCode81974() {

var code = editor81974.getSession().getValue();

jQuery(“#runBtn81974 i.run-code”).show(); jQuery(“.output-tab”).click();

jQuery.ajax({ url: “https://intellipaat.com/blog/wp-admin/admin-ajax.php”, type: “post”,

data: { language: “python”, code: code, cmd_line_args: “”, variablenames: “”, action:”compilerajax” }, success: function(response) { var myArray = response.split(“~”); var data = myArray[1];

jQuery(“.output81974”).html(“

"+data+"");
									jQuery(".maineditor81974 .code-editor-output").show();
									jQuery("#runBtn81974 i.run-code").hide();
									
								}
							})
					

						}
						
						
		function closeoutput81974() {	
		var code = editor81974.getSession().getValue();
		jQuery(".maineditor81974 .code-editor-output").hide();
		}

    // Attach event listeners to the buttons
    document.getElementById("copyBtn81974").addEventListener("click", copyCodeToClipboard81974);```html
    document.getElementById("runBtn81974").addEventListener("click", executeCode81974);
    document.getElementById("closeoutputBtn81974").addEventListener("click", dismissOutput81974);
    
    

Result:

single column in Python Output

2. Selecting rows based on multiple criteria in Python

This approach is a method that filters rows according to more than one criterion by employing logical operators such as & (and), | (or), and ~(not).

For instance, to choose rows where roll_number exceeds 35 and the Place is “SF”:

Illustration:

Python
Code Copied!

Result:

multiple conditions in Python Output

3. Selecting rows based on a collection of values in Python

You can filter the rows where a column's value aligns with the terms you provide, employing the .isin() method. This technique assists in extracting the data using the specified terms.

For instance, fetching rows where Place is either “LA” or “SF”:

Illustration:

Python
Code Copied!

Output:

list of values in Python Output

4. Choosing rows utilizing string matching in Python

This will narrow down results based on string matching through methods such as .str.contains() for partial matches. For instance, selecting rows where Name contains the substring “a”:

Example:

Python
Code Copied!

Output:

``````html string matching in Python Output

Approach 2: Utilizing .loc[ ] Method to Choose Rows in Python

You can utilize .loc[ ] for selecting rows from a pandas DataFrame grounded on column values by providing a condition within the .loc[ ] indexer. The condition can be any boolean expression that resolves to True or False for each individual row.

1. Choosing rows based on multiple criteria in Python

In order to choose rows based on several conditions, you can merge multiple conditions using the & (AND) or | (OR) operators, ensuring each condition is enclosed in parentheses for appropriate precedence.

Illustration:

Python
Code Copied!

Result:

rows based on multiple conditions

2. Choose Rows Based on a Condition and Retrieve Specific Column in Python

You can meld row selection and column selection within a singular .loc[] statement. For instance, if you'd like to select rows where ‘B’ > 1 and solely display column ‘A’.

Illustration:

Python
Code Copied!

"); jQuery(".maineditor99362 .code-editor-output").show(); jQuery("#runBtn99362 i.run-code").hide(); } }); }

function hideOutput99362() { var code = editor99362.getSession().getValue(); jQuery(".maineditor99362 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn99362").addEventListener("click", copyCodeToClipboard99362); document.getElementById("runBtn99362").addEventListener("click", executeCode99362); document.getElementById("closeoutputBtn99362").addEventListener("click", hideOutput99362);

Output:

Rows Based on a Condition and Retrieve Specific Column

3. Utilizing .loc[ ] for row and column selection in Python

Example:

Python

Code Copied!

var isMobile = window.innerWidth { // alert("Code copied to clipboard!"); jQuery(".maineditor99289 .copymessage").show(); setTimeout(function() { jQuery(".maineditor99289 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function executeCode99289() { var code = editor99289.getSession().getValue();

jQuery("#runBtn99289 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post", data: { language: "python", code: code, cmd_line_args: "", variablenames: "", action: "compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output99289").html("

" + data + "

"); jQuery(".maineditor99289 .code-editor-output").show(); jQuery("#runBtn99289 i.run-code").hide(); } }); }

function hideOutput99289() { var code = editor99289.getSession().getValue(); jQuery(".maineditor99289 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn99289").addEventListener("click", copyCodeToClipboard99289); document.getElementById("runBtn99289").addEventListener("click", executeCode99289); document.getElementById("closeoutputBtn99289").addEventListener("click", hideOutput99289);

Output:

Row and Column Selection in Python Output

4. Utilizing .loc[ ] with index labels in Python

Employing .loc[ ] with index labels in pandas enables you to reach or filter rows and columns according to the labels of the index, instead of depending on their integer placements.

Example:

Python

Code Successfully Copied!

var isMobile = window.innerWidth { // alert("Code copied to clipboard!");

jQuery(".maineditor25988 .copymessage").show(); setTimeout(function() { jQuery(".maineditor25988 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error during code copying: ", err); }); }

function runCode25988() {

var code = editor25988.getSession().getValue();

jQuery("#runBtn25988 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post",

data: { language: "python", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output25988").html("

"+data+"");
									jQuery(".maineditor25988 .code-editor-output").show();
									jQuery("#runBtn25988 i.run-code").hide();
									
								}
							})
					

						}
						
						
		function closeoutput25988() {	
		var code = editor25988.getSession().getValue();
		jQuery(".maineditor25988 .code-editor-output").hide();
		}

    // Link event listeners to the buttons
    document.getElementById("copyBtn25988").addEventListener("click", copyCodeToClipboard25988);
    document.getElementById("runBtn25988").addEventListener("click", runCode25988);
    document.getElementById("closeoutputBtn25988").addEventListener("click", closeoutput25988);
 
    



Results:

Usage of .loc[ ] with index labels in Python

Method 3: Utilizing .query() Method to Choose Rows in Python

The .query() method available in pandas offers a simple approach to filter information from a DataFrame using a string expression. It can be especially beneficial for more intricate conditions.

Logical operators such as & (and), | (or), and ~ (not) can be utilized to combine several conditions.

Instance: (A > 2 and B == ‘x’)

Python
Code Successfully Copied!

Result:

Method to Select Rows in Python Output

Method 4: Row Filtering Utilizing apply() and lambda Function in Python

We can filter rows by employing the apply() function in conjunction with a lambda function; conditions can also be set for filtering the rows. The apply() function allows for these conditions to be applied, subsequently filtering either rows or columns based on them.

Example: If you wish to filter the rows for which the values in column ‘A’ exceed 2.

Python
Code Copied!

Result:

lambda Function in Python Output

Method 5: Utilizing None and NaN Data in Python

We have the capability to filter rows or columns if they include None and NaN values, by utilizing the .notna() or .notnull() methods. These methods yield a boolean indicating the non-null status if the values in the DataFrame are not null.

Example:

Python
Code Copied!

Output:

Using None and NaN data in Python Output

1. Filtering rows where a column value is not NaN in Python

To filter rows where a column value is not NaN , which signifies that the value is absent, the notna() method will yield True for non-NaN values and False for NaN values.

For instance, Choose rows where column ‘A’ is not NaN.

Example:

Python
Code Copied!

Output:

```
column value is not NaN in Python Output

2. Filtering entries where a column value is not None in Python

To filter entries where a column value is not None, you can directly check the None values using x is not None in the lambda function, thereby ensuring you are verifying for None.

Example: Select entries where column ‘A’ is not None.

Python
Code Copied!

"); jQuery(".maineditor43839 .code-editor-output").show(); jQuery("#runBtn43839 i.run-code").hide(); } }); }

function closeoutput43839() { var code = editor43839.getSession().getValue(); jQuery(".maineditor43839 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn43839").addEventListener("click", copyCodeToClipboard43839); document.getElementById("runBtn43839").addEventListener("click", runCode43839); document.getElementById("closeoutputBtn43839").addEventListener("click", closeoutput43839);

Output:

column value is not None in Python Output

Conclusion

From this, it's concluded that pandas offer multiple techniques to filter as well as select rows using methods and predefined conditions. The strategies discussed here, including Boolean indexing, .loc[], .query(), and .isin(), support flexible and effective filtering based on one or more conditions. Furthermore, handling missing values such as NaN and None guarantees comprehensive data manipulation for analysis. These techniques will enhance data usability and efficiency, simplifying the analysis and visualization processes within Python.

The article How to Select Rows from a DataFrame based on Column Values in Python? was first published on Intellipaat Blog.


Leave a Reply

Your email address will not be published. Required fields are marked *

Share This