how-to-compare-float-and-double-while-accounting-for-precision-loss?

Directly assessing floats and doubles in C++ using == and != can prove challenging. Thanks to precision errors, minute rounding discrepancies may lead to unreliable direct comparisons, which can produce peculiar and unanticipated outcomes. Possible approaches to mitigate this issue include epsilon comparisons, relative tolerance techniques, among others. In this write-up, we will investigate precision loss, the challenges associated with direct comparison, various comparison methods, and recommended practices for evaluating float and double in C++ while considering precision loss.

Table of Contents:

What is Precision Loss in C++

Floating-point numbers in C++ adhere to the IEEE 754 standard, storing values as a mix of sign, exponent, and mantissa. Due to the limited bite size of the mantissa, certain decimal values (such as 0.1) cannot be accurately represented, leading to minor rounding discrepancies. These cumulative inaccuracies through mathematical operations can result in failed direct comparisons (==).

Challenges of Direct Comparison in C++

Using == or != for floating-point number evaluations can yield unpredicted outcomes due to incomparable precision losses. These inaccuracies from the constrained nature of floating-point arithmetic imply that in certain situations, two mathematically equivalent values may differ by just a negligible margin, causing direct comparisons to falter.

Methods for Comparing Float and Double in C++

Given the precision loss in floating-point numbers, direct comparison (==) becomes questionable. Below are methods for comparing float and double in C++:

1. Epsilon-Based Comparison (Absolute Tolerance)

As previously mentioned, floating-point numbers exhibit minor rounding inaccuracies; consequently, a direct comparison of a==b is unreliable. Instead, utilize the absolute difference along with a specific tolerance.

Example:

Cpp

Code Copied!

var isMobile = window.innerWidth “);

editor21191.setValue(decodedContent); // Set the default text editor21191.clearSelection();

editor21191.setOptions({ maxLines: Infinity });

function decodeHTML21191(input) { var doc = new DOMParser().parseFromString(input, “text/html”); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard21191() { const code = editor21191.getValue(); // Get code from the editor navigator.clipboard.writeText(code).then(() => { // alert(“Code copied to clipboard!”);

jQuery(“.maineditor21191 .copymessage”).show(); setTimeout(function() { jQuery(“.maineditor21191 .copymessage”).hide(); }, 2000); }).catch(err => { console.error(“Error copying code: “, err); }); }

function runCode21191() { var code = editor21191.getSession().getValue();

jQuery(“#runBtn21191 i.run-code”).show(); jQuery(“.output-tab”).click();

jQuery.ajax({ url: “https://intellipaat.com/blog/wp-admin/admin-ajax.php”, type: “post”,

data: { language: “cpp”, code: code, cmd_line_args: “”, variablenames: “”, action:”compilerajax” }, success: function(response) { var myArray = response.split(“~”); var data = myArray[1];

jQuery(“.output21191”).html(“

"+data+"");
									jQuery(".maineditor21191 .code-editor-output").show();
									jQuery("#runBtn21191 i.run-code").hide();

} })

}

function closeoutput21191() { var code = editor21191.getSession().getValue(); jQuery(".maineditor21191 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn21191").addEventListener("click",```javascript copyCodeToClipboard73220); document.getElementById("runBtn73220").addEventListener("click", runCode73220); document.getElementById("closeoutputBtn73220").addEventListener("click", closeOutput73220);

Result:

Epsilon-Based Evaluation

The preceding code verifies whether the total of 0.1f and 0.2f is nearly equivalent to 0.3f by utilizing an epsilon-based evaluation for comparing floating point numbers.

2. Relative Tolerance Evaluation

Absolute tolerance tends to perform effectively within the range of smaller numbers; however, it fails to do so for significantly large or minuscule values due to potential scaling dilemmas. Relative tolerance adjusts the comparison threshold in relation to the magnitude of the numbers, enhancing reliability across various ranges.

Instance:

C++

Code Copied!

var isMobile = window.innerWidth { jQuery(".maineditor70207 .copymessage").show(); setTimeout(function() { jQuery(".maineditor70207 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode70207() {

var code = editor70207.getSession().getValue();

jQuery("#runBtn70207 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post",

data: { language: "cpp", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output70207").html("

"+data+"");
        jQuery(".maineditor70207 .code-editor-output").show();
        jQuery("#runBtn70207 i.run-code").hide();

} })

}

function closeOutput70207() { var code = editor70207.getSession().getValue(); jQuery(".maineditor70207 .code-editor-output").hide(); }

// Attach event handlers to the buttons document.getElementById("copyBtn70207").addEventListener("click", copyCodeToClipboard70207); document.getElementById("runBtn70207").addEventListener("click", runCode70207); document.getElementById("closeoutputBtn70207").addEventListener("click", closeOutput70207);

Result:

Relative Tolerance Evaluation

This code illustrates how to define a template function to compare two values using relative tolerance calculated based on their magnitude for both float and double types.

3. Utilizing std::numeric_limits<T>::epsilon()

Machine epsilon std::numeric_limits::epsilon() represents the smallest feasible difference between two different floating point numbers. Therefore, it offers a dependable method for comparing floating point values in C++ concerning precision.

Instance:

C++

Code Copied!

editor73220.setValue(decodedContent); // Set the default text editor73220.clearSelection();

editor73220.setOptions({ maxLines: Infinity });

function decodeHTML73220(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard73220() { const code = editor73220.getValue(); // Retrieve code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!"); jQuery(".maineditor73220 .copymessage").show(); setTimeout(function() { jQuery(".maineditor73220 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode73220() { var code = editor73220.getSession().getValue();

jQuery("#runBtn73220 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post", data: { language: "cpp", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output73220").html("

"+data+"");
            jQuery(".maineditor73220 .code-editor-output").show();
            jQuery("#runBtn73220 i.run-code").hide();
        }
    });
}

function closeoutput73220() { var code = editor73220.getSession().getValue(); jQuery(".maineditor73220 .code-editor-output").hide(); }

// Event listeners for the buttons document.getElementById("copyBtn73220").addEventListener("click", copyCodeToClipboard73220); document.getElementById("runBtn73220").addEventListener("click", runCode73220); document.getElementById("closeoutputBtn73220").addEventListener("click", closeoutput73220);

Output:

The code above illustrates how to compare two double values utilizing std::numeric_limits::epsilon() relative to their magnitudes.

4. Utilizing std::isnan() and std::isinf()

Certain floating-point calculations may result in NaN (Not-a-Number) or Infinity, leading to comparison behavior that might be surprising. Functions std::isnan() and std::isinf() assist in identifying these exceptions prior to comparison, yielding more accurate results.

Example:

Cpp

Code Copied!

var isMobile = window.innerWidth ");

editor8656.setValue(decodedContent); // Set the default text editor8656.clearSelection();

editor8656.setOptions({ maxLines: Infinity });

function decodeHTML8656(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard8656() { const code = editor8656.getValue(); // Fetch code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!"); jQuery(".maineditor8656 .copymessage").show(); setTimeout(function() { jQuery(".maineditor8656 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode8656() { var code = editor8656.getSession().getValue();

jQuery("#runBtn8656 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post", data: { language: "cpp", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output8656").html("

"+data+"");
            jQuery(".maineditor8656 .code-editor-output").show();
            jQuery("#runBtn8656 i.run-code").hide();
        }
    });
}
``````html
 i.run-code").hide();

} })

}

function closeoutput8656() { var code = editor8656.getSession().getValue(); jQuery(".maineditor8656 .code-editor-output").hide(); }

// Link event handlers to the buttons document.getElementById("copyBtn8656").addEventListener("click", copyCodeToClipboard8656); document.getElementById("runBtn8656").addEventListener("click", runCode8656); document.getElementById("closeoutputBtn8656").addEventListener("click", closeoutput8656);

Result:

Employing std::isnan() and std::isinf()

The snippet demonstrates how to verify a given double value, determining whether it is a NaN (Not a Number), infinite (either positive or negative), or a valid finite number, subsequently displaying the corresponding message for each scenario.

Recommended Practices for Comparing Float and Double in C++ 

  1. Opt for double instead of float for superior precision unless there are considerations regarding memory or performance.
  2. For exceedingly small values, it is advisable to utilize epsilon-based comparison (fabs(a-b) &lt;= epsilon).
  3. When handling large or varying magnitude numbers, apply relative tolerance (epsilon * (max(|a|, |b|))).
  4. For precision-conscious comparisons, reference std::numeric_limits&lt;T&gt;::epsilon().
  5. Before making comparisons, verify for NaN and Infinity using std::isnan() and std::isinf().
  6. Whenever feasible, evade equality checks via subtraction, as it may result in precision inaccuracies.
  7. Be vigilant about compiler optimizations and floating-point settings, as these can influence precision.

Final Thoughts

Comparing float and double in C++ necessitates meticulous management due to potential precision loss. Direct equality comparisons (==) can be unpredictable, thus it is best to employ epsilon-based or relative tolerance methods. Prioritize double over float for improved accuracy and reference std::numeric_limits&lt;T&gt;:: epsilon(), while also addressing exceptional cases like NaN and Infinity. By adhering to these recommended practices, you can effectively achieve accurate, consistent, and portable floating-point comparisons.

How to Compare Float and Double While Considering Precision Loss &#8211; FAQs

The article How to Compare Float and Double While Accounting for Precision Loss? was first published on Intellipaat Blog.

```


Leave a Reply

Your email address will not be published. Required fields are marked *

Share This