fibonacci-series-in-java

“`html

Have you ever pondered how to compute the Fibonacci numbers using Java? What are the various methods to display the Fibonacci numbers in Java? Is it better to utilize loops, recursion, or dynamic programming, and which technique is the most efficient? Can you gather input from the user to determine how many numbers to display? In this guide, we will address all these inquiries and provide straightforward examples to facilitate your learning.

Contents:

What is the Fibonacci Series in Java?

The Fibonacci series in Java represents a sequence where every number is the total of the two preceding numbers. The sequence typically initiates with 0 and 1, and each successive number is derived from the addition of the two previous numbers.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

In the example above,

0+1=1
1+1=2
2+1=3
3+2=5
5+3=8
8+5=13

and this continues onward.

The Fibonacci series in Java can be generated in a multitude of ways. Some methods are outlined below.

Master Java Now – Enhance Your Future
Join Today and Transform Your Tomorrow
quiz-icon

Fibonacci Series via the Iterative Method

The Fibonacci Series via the Iterative Method is the simplest approach. It employs a for or while loop to compute the subsequent number in the sequence.

1. With a for loop

This method is beneficial when using a for loop, especially when you are aware of how many terms you wish to generate in the Fibonacci series.

Syntax:

for (initialization; condition; update) {
    // loop body
}

Example:

Java

Code Copied!

var isMobile = window.innerWidth /g, “>”); editor13524.setValue(decodedContent); editor13524.clearSelection();

editor13524.setOptions({ maxLines: Infinity });

function decodeHTML13524(input) { var doc = new DOMParser().parseFromString(input, “text/html”); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard13524() { const code = editor13524.getValue(); navigator.clipboard.writeText(code).then(() => { jQuery(“.maineditor13524 .copymessage”).show(); setTimeout(function() { jQuery(“.maineditor13524 .copymessage”).hide(); }, 2000); }).catch(err => { console.error(“Error copying code: “, err); }); }

function runCode13524() { var code = editor13524.getSession().getValue();

jQuery(“#runBtn13524 i.run-code”).show(); jQuery(“.output-tab”).click();

jQuery.ajax({ url: “https://intellipaat.com/blog/wp-admin/admin-ajax.php”, type: “post”, data: { language: “java”, code: code, cmd_line_args: “”, variablenames: “”, action:”compilerajax” }, success: “““javascript function(response) { var myArray = response.split(“”~””); var data = myArray[1];

jQuery(“.output13524”).html(“

" + data + "");
    jQuery(".maineditor13524 .code-editor-output").show();
    jQuery("#runBtn13524 i.run-code").hide();
}
})
}

function closeoutput13524() {
    var code = editor13524.getSession().getValue();
    jQuery(".maineditor13524 .code-editor-output").hide();
}

// Assign event listeners to the buttons
document.getElementById("copyBtn13524").addEventListener("click", copyCodeToClipboard13524);
document.getElementById("runBtn13524").addEventListener("click", runCode13524);
document.getElementById("closeoutputBtn13524").addEventListener("click", closeoutput13524);


Result:

Using a for loop

Clarification: In the preceding Java code, the quantity of terms to be displayed is 7. The initial two numbers were the Fibonacci series, which are 0 and 1. The for loop commences from i=2, since 0 and 1 have already been displayed, next = first + second, and then first = second, second = next.

2. Implementing a While Loop

The while loop is applied when you seek to produce Fibonacci numbers until a specified value is attained, rather than a predetermined count.

Structure:

while (condition) {
    // loop body (code executed repeatedly)
}

Illustration:

Java

Code Copied!

var isMobile = window.innerWidth { jQuery(".maineditor33419 .copymessage").show(); setTimeout(function() { jQuery(".maineditor33419 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode33419() { var code = editor33419.getSession().getValue();

jQuery("#runBtn33419 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post", data: { language: "java", code: code, cmd_line_args: "", variablenames: "", action: "compilerajax" }, success: function(response) { var myArray = response.split(""~""); var data = myArray[1];

jQuery(".output33419").html("

" + data + "");
            jQuery(".maineditor33419 .code-editor-output").show();
            jQuery("#runBtn33419 i.run-code").hide();
        }
    });
}

function closeoutput33419() {	
    var code = editor33419.getSession().getValue();
    jQuery(".maineditor33419 .code-editor-output").hide();
}

// Assign event listeners to the buttons
document.getElementById("copyBtn33419").addEventListener("click", copyCodeToClipboard33419);
document.getElementById("runBtn33419").addEventListener("click", runCode33419);
document.getElementById("closeoutputBtn33419").addEventListener("click", closeoutput33419);


Result:

Using a While Loop

Clarification: In the above Java code, the while loop creates a Fibonacci series until the numbers are less than or equal to 20. The initial two are set as 0 and 1. The while loop computes the next number, and subsequently adjusts the numbers.

3. Utilizing a do-while Loop

A do-while loop is utilized when you intend to execute the Fibonacci series at least once and wish to continue based on a condition.

Structure:

do {
    // loop body
} while (condition);

Illustration:

Java
``````html

Code Copied!

var isMobile = window.innerWidth ");

editor33983.setValue(decodedContent); // Set the default text editor33983.clearSelection();

editor33983.setOptions({ maxLines: Infinity });

function decodeHTML33983(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard33983() { const code = editor33983.getValue(); // Get code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!");

jQuery(".maineditor33983 .copymessage").show(); setTimeout(function() { jQuery(".maineditor33983 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode33983() { var code = editor33983.getSession().getValue(); jQuery("#runBtn33983 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post", data: { language: "java", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output33983").html("

"+data+"");
        jQuery(".maineditor33983 .code-editor-output").show();
        jQuery("#runBtn33983 i.run-code").hide();
    }
});
}
						
function closeoutput33983() {	
	var code = editor33983.getSession().getValue();
	jQuery(".maineditor33983 .code-editor-output").hide();
}

// Attach event listeners to the buttons
document.getElementById("copyBtn33983").addEventListener("click", copyCodeToClipboard33983);
document.getElementById("runBtn33983").addEventListener("click", runCode33983);
document.getElementById("closeoutputBtn33983").addEventListener("click", closeoutput33983);


Output:

Using a do-while Loop

Explanation: In the aforementioned Java code, the do block executes first, prior to verifying the condition in the while block. It outputs the Fibonacci numbers until the current number (first) exceeds 50, rather than the subsequent number.

Fibonacci Series Utilizing a Method

The Fibonacci Series can likewise be printed using a Method, meaning creating a reusable method that computes and displays the Fibonacci sequence, then applying iteration, like a for or while loop.

Example:

Java
Code Copied!

Result:

Fibonacci Series Using a Function

Summary: In the provided Java code, the printFibonacci(int n) method outputs the first n Fibonacci numbers. Following that, a loop runs n times, each time printing the current number and updating the values accordingly.

Fibonacci Series via Recursion

Recursion denotes a strategy where a method invokes itself until a base condition is satisfied. It addresses smaller instances of the overarching issue. This method is particularly beneficial in scenarios characterized by repetitive sub-problems, such as the Fibonacci series.

The recursion for the Fibonacci series is described by the following formula:

F(n) = F(n - 1) + F(n - 2)

Here, F(n) is the method and n designates the index within the Fibonacci sequence.

Instance:

Java

Code Copied!

var isMobile = window.innerWidth ");

editor84673.setValue(decodedContent); // Set the initial text editor84673.clearSelection();

editor84673.setOptions({ maxLines: Infinity });

function decodeHTML84673(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to duplicate code to clipboard function copyCodeToClipboard84673() { const code = editor84673.getValue(); // Retrieve code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!");

jQuery(".maineditor84673 .copymessage").show(); setTimeout(function() { jQuery(".maineditor84673 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error duplicating code: ", err); }); }

function runCode84673() {

var code = editor84673.getSession().getValue();

jQuery("#runBtn84673 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post",

data: { language: "java", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output84673").html("

"+data+"");
									jQuery(".maineditor84673 .code-editor-output").show();
									jQuery("#runBtn84673 i.run-code").hide();
									
								}
							})
					

						}
						
						
		function closeoutput84673() {	
		var code = editor84673.getSession().getValue();
		jQuery(".maineditor84673 .code-editor-output").hide();
		}

    // Bind event listeners to the buttons
    document.getElementById("copyBtn84673").addEventListener("click", copyCodeToClipboard84673);
    document.getElementById("runBtn84673").addEventListener("click", runCode84673);
    document.getElementById("closeoutputBtn84673").addEventListener("click", closeoutput84673);
 
    



Result:

Fibonacci Series Using Recursion

Summary:

  • The fib method is a recursive function that computes the nth Fibonacci number.
  • If n equals 0 or 1, it returns n directly (base case).
  • Otherwise, it invokes itself recursively with n-1 and n-2, returning the aggregated results.

Within the main method:

  • We establish n = 10 to specify how many Fibonacci terms to display.
  • A for loop runs from 0 to n-1, outputting each Fibonacci number by executing fib(i).

The outcome displays the Fibonacci sequence up to 10 terms.

``````html Fibonacci Series Utilizing Recursion in Java

In the image displayed above,

F(5) = F(4) + F(3)

= (F(3) + F(2)) + (F(2) + F(1))

= ((F(2) + F(1)) + (F(1) + F(0))) + ((F(1) + F(0)) + F(1))

Note: The function F(n) is computed until it reaches its base cases where n equals 0 or 1.

Fibonacci Series Through Memoization

Memoization is a technique that involves storing the outcomes of frequently called methods and reusing them when the same inputs reappear. This strategy prevents redundant calculations and enhances efficiency in recursive issues such as Fibonacci.

During recursion, the F(n) with identical n values is calculated multiple times, such as F(3) and F(4), causing overlapping subproblems and increased time complexity. Memoization saves calculated Fibonacci numbers in an array or HashMap for later use when required.

Example:

Java
Code Copied!

Output:

Fibonacci Series Utilizing Memoization

Description: In the preceding Java program, the memo[] preserves previously computed Fibonacci numbers. Before calculating any Fibonacci (n) value, we verify if the value is available in memo[n]. The memo[] array is initialized with -1 indicating that no value is held within it.

Fibonacci Series through Dynamic Programming

Dynamic Programming is a strategy in which challenges are divided into smaller sub-challenges, and each sub-challenge is resolved only once, with results stored to prevent repeated efforts.

There are two primary methods to achieve this:

  • Top-Down approach (using recursion + memoization)
  • Bottom-Up approach (using iteration)

Among the top-down and bottom-up methods, the Bottom-Up Dynamic programming proves to be more efficient as it eliminates recursion. Below, we will employ Bottom-Up Dynamic Programming, given its superior efficiency.

Example:

Java

Code Copied!

var isMobile = window.innerWidth ");

editor47112.setValue(decodedContent); // Establish the default text editor47112.clearSelection();

editor47112.setOptions({ maxLines: Infinity });

function decodeHTML47112(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard47112() { const code = editor47112.getValue(); // Retrieve code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!");

jQuery(".maineditor47112 .copymessage").show(); setTimeout(function() { jQuery(".maineditor47112 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); }

function runCode47112() { var code = editor47112.getSession().getValue();

jQuery("#runBtn47112 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post",

data: { language: "java", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output47112").html("

"+data+"");
				jQuery(".maineditor47112 .code-editor-output").show();
				jQuery("#runBtn47112 i.run-code").hide();

} }) }

function closeoutput47112() { var code = editor47112.getSession().getValue(); jQuery(".maineditor47112 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn47112").addEventListener("click", copyCodeToClipboard47112); document.getElementById("runBtn47112").addEventListener("click", runCode47112); document.getElementById("closeoutputBtn47112").addEventListener("click", closeoutput47112);

Output:

Fibonacci Series Utilizing Dynamic Programming

Explanation: In the preceding Java program, the fib[ ] is an array that retains the Fibonacci numbers from F(0) to F(n). The initial two elements, F(0) and F(1), are declared first, followed by the for loop which populates the remainder, i.e., F(i) = F(i-1) + F(i-2), and ultimately, we display the first n Fibonacci numbers.

Fibonacci Series Up to a Specified Number Using the Scanner

This displays all the Fibonacci numbers that are less than or equal to a specified number, provided by the user input n. It begins with 0 and 1 as the starter terms, then calculates each next term as the sum of the prior two. This cycle continues until the current term does not exceed the designated number n.

Example:

Java

Code Copied!

var isMobile = window.innerWidth ");

editor45995.setValue(decodedContent); // Initialize the default text editor45995.clearSelection();

editor45995.setOptions({ maxLines: Infinity });

function decodeHTML45995(input) { var doc = new DOMParser().parseFromString(input, "text/html"); return doc.documentElement.textContent; }

// Function to copy code to clipboard function copyCodeToClipboard45995() { const code = editor45995.getValue(); // Fetch code from the editor navigator.clipboard.writeText(code).then(() => { // alert("Code copied to clipboard!");

jQuery(".maineditor45995 .copymessage").show(); setTimeout(function() { jQuery(".maineditor45995 .copymessage").hide(); }, 2000); }).catch(err => { console.error("Error copying code: ", err); }); } ``````javascript runCode45995() {

var code = editor45995.getSession().getValue();

jQuery("#runBtn45995 i.run-code").show(); jQuery(".output-tab").click();

jQuery.ajax({ url: "https://intellipaat.com/blog/wp-admin/admin-ajax.php", type: "post",

data: { language: "java", code: code, cmd_line_args: "", variablenames: "", action:"compilerajax" }, success: function(response) { var myArray = response.split("~"); var data = myArray[1];

jQuery(".output45995").html("

"+data+"");
									jQuery(".maineditor45995 .code-editor-output").show();
									jQuery("#runBtn45995 i.run-code").hide();

} })

}

function closeoutput45995() { var code = editor45995.getSession().getValue(); jQuery(".maineditor45995 .code-editor-output").hide(); }

// Attach event listeners to the buttons document.getElementById("copyBtn45995").addEventListener("click", copyCodeToClipboard45995); document.getElementById("runBtn45995").addEventListener("click", runCode45995); document.getElementById("closeoutputBtn45995").addEventListener("click", closeoutput45995);

Outcome:

Fibonacci Series Up to a Given Number Using the Scanner

Clarification: In the preceding Java code, initially, the input is received from the user through the Scanner class, followed by a while loop that persists as long as the condition ≤ max remains valid. It then outputs each Fibonacci number until it surpasses the limit set by the user.

Note: If the user inputs a negative number, there will be no output.

Performance Assessment of Varying Approaches

Technique Time Required Memory Utilized Velocity
Iterative O(n) O(1) Quick
Method with Loop O(n) O(1) Quick
Recursion O(2ⁿ) O(n) Quite Slow
Memoization O(n) O(n) Very Fast
Dynamic Programming (Bottom-Up) O(n) O(n) Very Fast
Up to a Given Number O(n) O(1) Quick
Unlock Your Future in Java
Start Your Java Journey for Free Today
quiz-icon

Conclusion

From the aforementioned article, we derive that there are several methods to display the Fibonacci series in Java. For a swift and straightforward approach, utilizing loops or functions is advisable. Recursion illustrates how the series operates, but is relatively slow. Both Memoization and dynamic programming enhance the speed by retaining previously completed tasks. If user input is needed, the Scanner method is useful.

To delve deeper into this topic, you can consult our Java course.

Fibonacci Series in Java – FAQs

Q1. What constitutes a Fibonacci series in Java?

The Fibonacci series in Java is a sequence of numbers where each number is the sum of the preceding two numbers.

Q2. In what ways is Fibonacci applied in real life?

The Fibonacci numbers find application in numerous domains, such as computing, the design of shells, engineering, architecture, and even within financial markets.

Q3. Why is Fibonacci significant?

Fibonacci holds importance as it allows for efficient solutions to mathematical queries and is utilized in computer algorithms, the sciences, and art.

Q4. What is the swiftest way to generate Fibonacci numbers in Java?

Utilizing dynamic programming or memoization provides rapid and efficient performance with O(n) time complexity. For extremely large n, matrix exponentiation achieves O(log n) speed.

Q5. How can large Fibonacci numbers be managed in Java?

Employ the BigInteger class to compute and store Fibonacci numbers that exceed the limits of int or long.

The post Fibonacci Series in Java appeared first on Intellipaat Blog.

```


Leave a Reply

Your email address will not be published. Required fields are marked *

Share This